Nachrichten, Gerüchte, Meldungen und Berichte aus der IT-Szene

Redaktion: Heinz Schmitz


Nanostrukturen transportieren Lichtenergie

Die Umwandlung von Lichtenergie in Strom gewinnt immer mehr an Bedeutung. Technische Fortschritte auf diesem Gebiet hängen wesentlich davon ab, dass es gelingt, die durch Licht erzeugte Energie bei nur minimalen Verlusten zu transportieren. Dafür werden neuartige Komponenten und Bauelemente benötigt. Wissenschaftler der Universität Bayreuth und der FAU Erlangen-Nürnberg berichten jetzt im Forschungsmagazin „Nature“ über Nanofasern, die bei Raumtemperatur einen zielgerichteten Energietransport erstmals über mehrere Mikrometer ermöglichen. Dies wird durch einen quantenmechanisch kohärenten Transport entlang der einzelnen Nanofaser gewährleistet.

 

Die Forschergruppen um Dr. Richard Hildner und Prof. Dr. Hans-Werner Schmidt an der Universität Bayreuth haben supramolekulare Nanostrukturen hergestellt, in denen sich die von Licht erzeugte Energie geradlinig über mehrere Mikrometer fortpflanzt – und zwar bei Raumtemperatur, ohne dabei wesentlich schwächer zu werden. Diese Nanostrukturen sind aus über 10.000 identischen Bausteinen aufgebaut. Jeder Baustein ähnelt dabei in seiner Struktur einem Propeller mit drei Flügeln: In der Mitte befindet sich eine Carbonyl-verbrückte Triarylamin-Einheit; hieran sind drei Naphthalimidbithiophen-Chromophore befestigt, die nach außen abstehen.

 

Diese scheibchenförmigen Bausteine bilden spontan durch Selbstorganisation Nanofasern mit Längen von mehr als 4 Mikrometern und einem Durchmesser von nur 0,005 Mikrometern (zum Vergleich: ein menschliches Haar ist ungefähr

50 bis 100 Mikrometer dick). Entscheidend für den Energietransport ist die Carbonyl-verbrückte Triarylamin-Scheibe, die von der Forschungsgruppe um Dr. Milan Kivala an der FAU Erlangen-Nürnberg synthetisiert und an der Universität Bayreuth chemisch modifiziert wurde.

 

Mit einer Vielzahl von Mikroskopietechniken haben die Bayreuther Wissenschaftler sichtbar gemacht, wie die Energie eine solche Nanofaser in Längsrichtung durchläuft. Selbst bei einer Distanz von 4,4 Mikrometern treten nur äußerst geringfügige Verluste auf. Würde man – wiederum auf dem Weg der Selbstorganisation – die Faser um weitere Bausteine verlängern, könnte die Energie auch diese größere Reichweite durchlaufen. Beim Energietransport durch die Nanofaser arbeiten die perfekt angeordneten molekularen Bausteine in einer präzise aufeinander abgestimmten Weise. Sie geben die Energie in einem gleichmäßigen Takt von einem Baustein zum nächsten weiter: ein Phänomen, das in der physikalischen Forschung als quantenmechanische Kohärenz bezeichnet wird.

 

„Wir haben hier sehr vielversprechende Nanostrukturen vor uns, die deutlich machen, dass die Suche nach optimal geeigneten Materialien für den effizienten Transport von Lichtenergie ein lohnendes Forschungsgebiet darstellt“, erklärt Dr. Richard Hildner, der sich an der Universität Bayreuth auf das Forschungsgebiet des „Light Harvesting“ („Lichternte“) spezialisiert hat. Hier geht es darum, die Transportprozesse in der pflanzlichen Photosynthese möglichst genau zu verstehen, um die dabei gewonnenen Erkenntnisse für die Energieerzeugung aus Sonnenlicht zu nutzen.

 

„Die von uns synthetisierten supramolekularen Nanostrukturen können uns möglicherweise weiteren Aufschluss darüber geben, wie der Photosynthese- Apparat in Pflanzen oder auch in Bakterien funktioniert. Außerdem wollen wir in den nächsten Monaten prüfen, inwieweit sich diese Strukturen beispielsweise als Komponenten für neuartige Architekturen von Solarzellen und optischen Bauelementen eignen“, so Hildner.

Chemische Struktur des scheibchenförmigen Bausteins. (Grafik: Andreas T. Haedler)

 

Originalveröffentlichung:

Andreas T. Haedler et al.: Long-Range Energy Transport in Single Supramolecular Nanofibres at Room Temperature, Nature 523, 196 - 199 (9 July 2015), DOI: 10.1038/nature14570

 

Siehe auch:

http://www.nature.com/nature/journal/v523/n7559/full/nature14570.html

http://www.chemie.uni-bayreuth.de/mci/de/pub/pub/pub_detail.php?id_obj=36696

 

Zurück