Nachrichten, Gerüchte, Meldungen und Berichte aus der IT-Szene
Redaktion: Heinz Schmitz
Sonnenenergie bei ihrer Entstehung beobachten
15 Millionen Grad Celsius – so heiß ist es im Inneren unserer Sonne. Dort laufen verschiedene Fusionsreaktionen ab. 99 Prozent der Energie entstehen durch einen Fusionszyklus, bei dem zu Beginn zwei Wasserstoffatome zu einem Atomkern von schwerem Wasserstoff verschmelzen. In diesem Zyklus wird die Energie freigesetzt, die die Sonne zum Leuchten bringt (Sonnenstrahlung). Es entstehen außerdem elektrisch neutrale Elementarteilchen, die Neutrinos. Bisherige Analysen der Sonnenenergie beruhen auf Messungen der Sonnenstrahlung. Im Durchschnitt braucht diese jedoch über hunderttausend Jahre, um aus dem dichten Sonneninneren an deren Oberfläche zu gelangen. Das bedeutet, die errechneten Werte entsprechen der Energie, die über hunderttausend Jahre zuvor im Inneren der Sonne freigesetzt wurde.
Ganz anders verhalten sich die Neutrinos: Weil Neutrinos als elektrisch neutrale Elementarteilchen mit anderer Materie kaum in Wechselwirkung geraten und sich deshalb frei bewegen können, verlassen sie auch das Sonneninnere wenige Sekunden nach ihrer Erzeugung und erreichen bereits nach etwa acht Minuten die Erde. Die gleichen Eigenschaften, die es den Teilchen ermöglichen, das Sonneninnere so schnell zu verlassen, machen es aber auch extrem schwierig, die Neutrinos aus der für die Sonnenenergie entscheidenden Kernreaktion zu messen. "Die jetzt veröffentlichte Beobachtung konnte nur gelingen, weil Borexino weltweit der empfindlichste Detektor ist und wir Störungen durch Strahlung und andere kosmische Teilchen extrem reduzieren konnten", sagt Prof. Dr. Stefan Schönert. "Neben Sonnenneutrinos können wir daher auch Neutrinos aus dem Erdinneren beobachten und mithilfe dieser Daten geophysikalische Modelle testen", fügt Prof. Dr. Lothar Oberauer hinzu. Beide Wissenschaftler arbeiten am TUM-Lehrstuhl für Experimentelle Astroteilchenphysik.
Die neuen Ergebnisse ermöglichen es zum ersten Mal, experimentell nachzuweisen, dass die Energiefreisetzung im Sonneninneren seit sehr langer Zeit unverändert ist. Dazu verglichen die Forscher die Werte der aktuellen Sonnenenergie, die nun mithilfe der neuen Methode gemessen werden kann, mit denen der Sonnenenergie von vor über hunderttausend Jahren, die sich aus der Sonnenstrahlung berechnen lässt. Das Ergebnis des Vergleichs steht im Einklang mit aktuellen theoretischen Sonnenmodellen.
Die Wissenschaftler der Borexino-Kollaboration haben auch weiterhin ehrgeizige Pläne: In den kommenden vier Jahren sollen die bisherigen Messungen weiter verbessert und neue Neutrino-Beobachtungen durchgeführt werden. Insbesondere wird derzeit ein neues Experiment vorbereitet, um nach neuen Teilchen, sogenannten sterilen Neutrinos, zu suchen. Ihre Existenz hätte fundamentale Auswirkungen für die Teilchenphysik, Astrophysik und Kosmologie.
Das Borexino-Experiment ist im italienischen Gran-Sasso-Untergrundlabor rund 1400 Meter unter der Erde installiert und dient primär der Beobachtung von Neutrinos. Borexino ist eine Kooperation von Wissenschaftlern aus Italien, Deutschland, Frankreich, Polen, den USA und Russland. Aus Deutschland sind Gruppen der Technischen Universität München, des Max-Planck-Instituts für Kernphysik in Heidelberg, der Universitäten Mainz und Hamburg, sowie der Technischen Universität Dresden beteiligt. Einer der Autoren und Mitinitiator des Borexino Experiments ist der emeritierte TUM-Professor Franz von Feilitzsch, der 1994 den Sonderforschungsbereich "Astroteilchenphysik" gründete, wobei das Borexino-Experiment eine zentrale Rolle einnahm.
Originalpublikation:
Borexino Collaboration: Observation of the neutrinos from primary proton- proton fusion in the sun Nature, 28 August 2014, 2014-04-05260C
DOI: 10.1038/nature13702