Nachrichten, Gerüchte, Meldungen und Berichte aus der IT-Szene

Redaktion: Heinz Schmitz


Maschinenintelligenz trifft komplexe Netzwerke

Maschinenintelligenz trifft Netzwerk
Maschinenintelligenz analysiert komplexe Netzwerke. (Quelle: TU-Dresden / pixabay.com/en/forward-robot-2083419)

Archimedes stellte sich vor, dass eine Netzwerkstruktur - ein Polygon bestehend aus Dreiecken -, die durch Abtastung des geometrischen Gesetzes eines Kreises entsteht, ein nützliches Hilfsmittel zur Annäherung von Eigenschaften wie der Fläche des ursprünglichen Kreises ist. Fast 2000 Jahre später ist ein faszinierendes und herausforderndes Problem der Netzwerkwissenschaft konzeptionell das Problem umgekehrt zu dem von Archimedes und besteht darin, ein Netzwerk wieder auf die ursprüngliche Geometrie abzubilden. Dr. Cannistraci und seine Kollegen entdeckten, dass intelligente Maschinen zur unbeaufsichtigten Erkennung und Visualisierung von Ähnlichkeiten in großen Datenmengen dazu beitragen können, eine rechnerische Lösung für dieses Problem anzubieten, insbesondere wenn die versteckte Geometrie der komplexen Netzwerke hyperbolisch ist.

 

Mit dem Beginn der Ära der Big Data und dem Aufkommen der Netzwerkwissenschaften werden komplexe physikalische Systeme immer mehr aus der Netzwerkperspektive betrachtet. Seit einigen Jahren ist die Netzwerkgeometrie ein aufstrebender Zweig, der die Idee unterstützt, dass reale Netzwerke Diskretisierungen kontinuierlicher geometrischer Räume sind und diese latenten Räume ihre topologischen Eigenschaften formen.

 

Insbesondere hat sich gezeigt, dass der hyperbolische Raum die wichtigsten strukturellen Merkmale reproduziert, die in realen Systemen beobachtet werden. Eine effiziente Methode, um die latente hyperbolische Geometrie der Netzwerke aufzudecken, bietet jetzt die "Koaleszenz-Einbettung ", ein von Dr. Cannistraci erfundener Algorithmus, der von der Biomedical Cybernetics Group entwickelt und getestet wurde.

 

Eine Koaleszenz-Einbettung kann auf jede Art eines als Netzwerk darstellbaren physischen Systems angewendet werden, da sie nur die Netzwerktopologie benötigt. Diese wird durch die interagierenden Teile des Systems (Knoten) und die Verbindungen zwischen ihnen (Links) repräsentiert. Es werden keine feldspezifischen Informationen benötigt. Der Algorithmus nutzt unbeaufsichtigte Techniken des maschinellen Lernens zur Verminderung der Dimensionalität, um die Ähnlichkeiten zwischen den Knoten genau abzuleiten, und er liefert in der Ausgabe die hyperbolische Einbettung des Netzwerks: Jeder Knoten wird einer geometrischen Position im hyperbolischen Raum zugeordnet, so dass geometrisch nahe liegende Knoten eher interagieren. Die Koaleszenz Einbettung reduziert die Rechenzeit im Vergleich zu bisher entwickelten Methoden erheblich, sie kann Netzwerke auf Räume von mehr als zwei Dimensionen abbilden und, wenn sie verfügbar sind, zusätzliche Informationen über die Stärke der Wechselwirkungen nutzen.

 

Die Abbildung des Netzwerkes in den geometrischen Raum erlaubt es, mehrere Studien durchzuführen, die in der ursprünglichen Topologie möglicherweise nicht gleich wirksam sind. Anwendungsbeispiele sind die Detektion von Communities in sozialen Netzwerken, die Vorhersage von Protein-Protein- Interaktionen in biologischen Netzwerken und die Analyse des Routing in Internet-Netzwerken. In einer kürzlich von Dr. Cannistraci geleiteten neurowissenschaftlichen Studie, die bereits als Vordruck auf dem arXiv- Repository verfügbar ist (Koaleszenz-Einbettung im hyperbolischen Raum enthüllt unbeaufsichtigt die versteckte Geometrie des Gehirns), wurde die Koaleszen-Einbettung auf strukturelle MRT-Hirn-Connectome untersucht. Dabei wurde unter anderem die interessante Entdeckung gemacht, dass in den Connctomen von Parkinson-Patienten pathologische Veränderungen auftreten. Dies eröffnet eine neue Perspektive für die Realisierung von Netzwerkmarkern auf Grundlage von latenter Geometrie für die Diagnose von Hirnstörungen und -krankheiten.

 

Experimente in vielen Netzwerken zeigten, dass unser Algorithmus in der Lage ist, in wenigen Sekunden eine genauere Einbettung zu ermöglichen, als die, die durch frühere Techniken nach stundenlangem Rechnen erreicht wurde. Dies ebnet den Weg zur Untersuchung von Großsystemen", erklären Alessandro Muscoloni und Josephine Maria Thomas, die Erstautoren dieser Studie.

 

„Als ich 2016 die ersten Ergebnisse bei der jährlichen Netzwerk- Wissenschaftskonferenz in Korea präsentierte, konnten einige meiner Kollegen nicht glauben, dass es möglich war – dass unbeaufsichtigte Maschinenintelligenz tatsächlich eine genaue rechnerische Lösung für dieses faszinierende Netzwerkgeometrieproblem bieten kann. Ich hoffe, dass dieser Artikel viele Wissenschaftler inspirieren wird, sich ‚unkonventionelle‘ Lösungen für Probleme in der Physik komplexer Systeme vorzustellen, bei denen die Maschinenintelligenz eine wichtige Rolle als ergänzendes Werkzeug zur Integration mit der klassischen statistischen Mechanik spielen kann“, sagt Carlo Vittorio Cannistraci, der korrespondierende Autor dieser Studie.

 

Originalveröffentlichung:

“Machine learning meets complex networks via coalescent embedding in the hyperbolic space”; Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi and Carlo Vittorio Cannistraci Nature Communications 8, Article number: 1615 (2017); DOI: 10.1038/s41467-017-01825-5

 

Siehe auch:

https://www.nature.com/articles/s41467-017-01825-5

http://www.tu-dresden.de/biotec

Zurück