Nachrichten, Gerüchte, Meldungen und Berichte aus der IT-Szene

Redaktion: Heinz Schmitz


Entwicklungsstand lebensnaher mikroelektronischer Systeme

Ein sich auf einer Oberfläche selbst-faltendes mikroelektronisches Modul (SMARTLET), das eine Fülle von Funktionen integrieren kann, zum Beispiel: Energieversorgung, Aktorik, Sensorik und Kommunikationsfähigkeiten.

Ein sich auf einer Oberfläche selbst-faltendes mikroelektronisches Modul (SMARTLET), das eine Fülle von Funktionen integrieren kann, zum Beispiel: Energieversorgung, Aktorik, Sensorik und Kommunikationsfähigkeiten. (Quelle: Forschungszentrum MAIN/TU Chemnitz)

 

Immer komplexere elektronische Geräte wie Autos, Batterien, Smartphones, Haushaltsgeräte oder Industrieroboter mit immer kürzeren Entwicklungs- und Lebenszyklen stehen im deutlichen Widerspruch zu den Erfordernissen einer Welt mit endlichen Ressourcen. Die Natur zeigt bessere Wege auf, um komplexe Entwicklungen auch in Umgebungen mit beschränkten Ressourcen nachhaltig zu vollziehen. Ein gutes Beispiel sind lebende Organismen auf der Basis von Zellverbünden: Diese können riesige Informationsmengen im Gigabit-Bereich in der DNA speichern, sich selbst laufend verbessern, aber sich nach Notwendigkeit auch wieder selbst abbauen.

 

Das Forschungsfeld der „Lebenden Technologien“ widmet sich diesen und weiteren Kern-Eigenschaften des Lebens und möchte diese technologisch und ökologisch nutzbar machen. Die Mikroelektronische Morphogenese, also die Entwicklung und Formgebung von Organismen auf mikroelektronischer Ebene wie der Mikrorobotik, ist hierfür ein entscheidender Forschungsbereich. Denn hier kommen Hochtechnologie und Ressourceneffizienz in Kombination mit innovativen Einsatzfeldern wie der Biomedizin zusammen. Das Forschungszentrum für Materialien, Architekturen und Integration von Nanomembranen (MAIN) der Technischen Universität Chemnitz (TUC) forscht international und transdisziplinär in diesem Bereich und gehört als Mitglied des renommierten internationalen European Centre for Living Technology (ECLT) in Venedig zu den weltweit führenden Akteuren.

 

In einem aktuellen Beitrag mit dem Titel „Microelectronic Morphogenesis: Smart Materials with Electronics Assembling into Artificial Organisms“ in der Fachzeitschrift „Advanced Materials“ geben Wissenschaftler des Forschungszentrums MAIN zum ersten Mal einen umfassenden Überblick über die grundlegenden Durchbrüche im Bereich der „Lebenden Technologien“ und zeigen das Potenzial und die Notwendigkeit einer solchen Entwicklung für den nachhaltigen Umgang mit technologischen Ressourcen auf. Das Journal hat einen Impact-Faktor von 29,4; der Impact-Faktor gibt den Einfluss an, den eine Fachzeitschrift auf die Scientific Community hat. Ein Wert höher als zehn gilt als besonders einflussreich und bedeutend für die Forschung. „Diese Forschungsarbeit ist unser erster Beitrag als neues Mitglied des European Centre for Living Technology mit Sitz in Venedig", sagt Prof. Dr. Oliver G. Schmidt, Wissenschaftlicher Direktor des Forschungszentrums MAIN der TUC. „Es ist wunderbar zu sehen, dass sich unsere intensive Zusammenarbeit mit dem ECLT so schnell auszahlt, mit unmittelbarem transdisziplinärem Nutzen für die internationale Wissenschaftsgemeinschaft.“

 

„Die theoretische Forschung am ECLT benötigt dringend Impulse für die Implementierung neuartiger Technologiesysteme, die in der Lage sind, die Kerneigenschaften lebender Systeme nachzubilden“, sagt Prof. John McCaskill, Erstautor der Arbeit, Angehöriger von MAIN und Gründungsdirektor des ECLT.

 

SMARTLETs: Winzige Einheiten, die sich selbst organisieren und größere sowie komplexere Systeme bilden können

Für das Forschungsgebiet der Mikroelektronischen Morphogenese stellen die Autoren fest, dass weiche mikroelektronische Robotikmodule (sogenannte „SMARTLETs“) bald in der Lage sein werden, sich selbst zu größeren komplexen Systemen – sogenannten künstlichen Organismen – zusammenzufügen. Auf diesem Forschungsgebiet der „Mikroelektronischen Morphogenese“ – der Formgebung unter mikroelektronischer Kontrolle – bauen auch Forschungsarbeiten der vergangenen Jahre an der TUC auf.

 

Auf dem Weg zum elektronischen Genom

SMARTLETs bestehen aus gefalteten und beweglichen Mikromodulen, die mit winzigen Silizium-Chips – sogenannten Chiplets – ausgestattet sind. Dadurch werden die SMARTLETs in die Lage versetzt, nicht nur Informationen über komplexe Funktionen zu speichern, sondern auch Herstellungsrezepte (sog. elektronische Genome) zu kodieren. Damit können sich die SMARTLETs wie Zellen kopieren und weiterentwickeln. Darüber hinaus verfügen die Chiplets über neuromorphe Lernfähigkeiten, die es den SMARTLETs ermöglichen, ihre Leistung zunehmend und evolutionär zu verbessern.

 

Setzen sich viele SMARTLETs nach einem bestimmten elektronischen Bauplan zusammen, entsteht ein künstlicher Organismus – hier ein Rädertierchen (r.) mit einem hohlen Körper und einem Kranz aus hochflexiblen Wimpern.

Setzen sich viele SMARTLETs nach einem bestimmten elektronischen Bauplan zusammen, entsteht ein künstlicher Organismus – hier ein Rädertierchen (r.) mit einem hohlen Körper und einem Kranz aus hochflexiblen Wimpern. (Quelle: Forschungszentrum MAIN/TU Chemnitz)

 

„Selbstwahrnehmung“ des eigenen Zustandes

Während und nach der Selbstorganisation vieler SMARTLETs zu einem künstlichen Organismus werden sowohl fluidische als auch elektrische Verbindungen zwischen den SMARTLETs aufgebaut. Diese Verbindungen können genutzt werden, um den Chiplets an Bord den Zustand des künstlichen Organismus „bewusst“ zu machen, so dass sie Reparaturen anordnen, Fehlmontagen korrigieren, Demontagen einleiten und gemeinsame Funktionen über viele SMARTLETs hinweg bilden können. Zu diesen Funktionen gehören die erweiterte Kommunikation (Antennen), Energiespeicherung, -gewinnung und -umverteilung, Fernerkundung, Materialumverteilung usw. Kontrolle, Sicherheit und Verantwortung

 

Natürliche Organismen bestehen aus biologischen Substanzen und können sich in der Umwelt frei vermehren. Die essenziellen Silizium-Komponenten von SMARTLETs können dagegen nur unter menschlicher Kontrolle in spezialisierten Halbleiterfabriken hergestellt werden, daher besteht für künstliche Organismen keine Möglichkeit einer unkontrollierten Verbreitung in der Umwelt.

 

Die vollständige digitale Erfassung der SMARTLET Eigenschaften auf den Chiplets ermöglicht es weiterhin, den materiellen Gehalt, den Urheber und sämtliche umweltrelevanten Faktoren der künstlichen Organismen auszulesen. Prof. Dr. Dagmar Gesmann- Nuissl, Inhaberin der Professur für Privatrecht und Recht des geistigen Eigentums an der TUC, stellt dazu fest: „Diese feinkörnige Dokumentation der Verantwortung bis in den mikroskopischen Bereich hinein wird die rechtliche Zuordnung von ökologischer und sozialer Verantwortung für unsere technischen Errungenschaften grundlegend verändern.“

 

Durch Selbstorganisation auch Selbstrecycling möglich

SMARTLETs können sich dank ihrer Fähigkeit zur Fortbewegung, Wahrnehmung und Selbstorganisation für das Recycling selbst sortieren. Zudem können die SMARTLETs wiedergewonnen, wiederverwendet, neu konfiguriert und in verschiedenen künstlichen Organismen unterschiedlich eingesetzt werden. Prof. Dr. Marlen Gabriele Arnold, Inhaberin der Professur BWL – Betriebliche Umweltökonomie und Nachhaltigkeit der TUC, merkt dazu an: „Selbst bei einer großen Materialmenge könnten diese Eigenschaften dieser Technologie ein bisher nicht gekanntes Maß an Nachhaltigkeit verleihen und die Messlatte für künftige Technologien und deren Einsatz im Einklang mit den Ressourcen unseres Planeten sehr hoch legen."

 

Originalbeitrag:

John S. McCaskill, Daniil Karnaushenko, Minshen Zhu und Oliver G. Schmidt: “Microelectronic Morphogenesis: Smart Materials with Electronics Assembling into Artificial Organisms”, Advanced Materials (2023).

https://onlinelibrary.wiley.com/doi/10.1002/adma.202306344

 

Zurück