Nachrichten, Gerüchte, Meldungen und Berichte aus der IT-Szene
Redaktion: Heinz Schmitz
Batterie 4.0 - Nachfolger der Lithiumtechnologie
Die wichtigsten Komponenten einer Aluminium-Ionen-Batterie: Graphitpulver, Aluminium-Folie und ein spezieller Elektrolyt, der aus einer bei Raumtemperatur flüssigen Salzschmelze besteht. (Quelle: Maximilian Wassner/Fraunhofer THM)
Die Prognosen sind sich einig. Sie alle sagen einen drastisch steigenden Bedarf an elektrischen Speichern für mobile und stationäre Anwendungen voraus. Um die Nachfrage zu decken, bedarf es erheblicher Anstrengungen bei der Weiterentwicklung etablierter Batteriesysteme. Gleichzeitig müssen verstärkt neuartige Materialsysteme, so genannte Post-Lithium-Systeme, in einem absehbaren Zeitraum zur Marktreife geführt werden. Dabei bietet sich bei der Technologieentwicklung der große Vorteil, von Beginn an auf nachhaltige Zellkonzepte zu setzen. Diese berücksichtigen neben Sicherheits- und Kostenaspekten die Substitution kritischer Rohstoffe, ein recycling-gerechtes Design und weitere Anforderungen der Kreislaufwirtschaft. Eine vielversprechende Batterietechnologie dafür sind die Aluminium-Ionen-Batterien, die am Fraunhofer THM in Freiberg entwickelt werden.
Simple Aluminiumfolie
Am Technologiezentrum Hochleistungsmaterialien (THM) in Freiberg erforscht die Arbeitsgruppe Batteriematerialien des Fraunhofer IISB seit etwa 5 Jahren eine Lithium-freie und Aluminium-basierte Zellchemie. Neben einer theoretisch vierfach höheren volumetrischen Energiedichte als metallisches Lithium bietet das Batteriematerial Aluminium handfeste Vorteile in der Praxis. In Lithium-Ionenzellen fungiert eine hochreine und beschichtete Aluminiumfolie als Stromsammler. In der Aluminium-Ionen-Batterie (AIB) übernimmt dagegen eine einfache Aluminiumfolie gleichzeitig die Funktion der Anode. Hierbei werden an das Aluminium keine besonderen Qualitätsanforderungen gestellt und marktübliche kostengünstige Folien reichen für den Zweck völlig aus. Ebenso bieten Aluminiumbatterien ein hohes Maß an Sicherheit, denn es gibt keine Brandgefährdung wie beim Einsatz von Lithium.
Zellchemie mit Potential
Ulrike Wunderwald, Leiterin der Arbeitsgruppe Batteriematerialien des Fraunhofer IISB, berichtet über die vielversprechenden Entwicklungen: „In unseren Laborsystemen wurden mit Graphitpulver als Kathode bereits Energiedichten von 135Wh/kg in Bezug auf die Aktivmasse gezeigt. Die Batterie kann in einer Zeit von weniger als 30 Sekunden voll ge- und entladen werden. Der Prozess ist reversibel und wir haben mit den Laborzellen bereits über 10.000 Zyklen mit einer Ladeeffizienz von mehr als 90 % erreicht. Unsere neuesten Ergebnisse zeigen, dass auch noch mehr als doppelt so viele Ladezyklen möglich sind. Das liegt ganz deutlich über dem, was etablierte Lithium-Ionen-Batterien ausweisen. Unsere Zellen funktionieren dabei unter normalen Umgebungsbedingungen und wir arbeiten bereits mit anwendungsrelevanten Zellkonzepten wie Knopfzellen und Pouch- Zellen. Diese Zellchemie hat ein enormes Potential.“
Kostengünstig, sicher, nachhaltig
Durch ihren vereinfachten Aufbau bieten Aluminium-Ionen-Batterien den Vorteil einer kostengünstigeren Fertigung mit reduziertem Prozessaufwand. Dabei ist Aluminium als Ressource unkritisch und muss als Batteriematerial noch nicht einmal von besonderer Qualität sein. Ebenso können in Aluminium-Ionen-Batterien günstige Elektrolyte auf der Basis von Harnstoff verwendet werden, wie aktuelle Forschungsergebnisse des Fraunhofer THM zeigen. Die nachgewiesene Schnellladefähigkeit bei hoher Zyklenstabilität und mit hoher Ladeeffizienz spricht für die elektrischen Eigenschaften dieser Zellchemie. Die vergleichsweise geringen Gefährdungsrisiken, der Verzicht auf kritische Rohstoffe und nicht zuletzt der Kostenvorteil zeigen sehr deutlich das Potential der Aluminium-Ionen- Batterie als preiswerte und sichere Lösung für zukünftige elektrische Speicher. Eine realistische Anwendung, die schon in wenigen Jahren gelingen könnte, wären beispielsweise hochdynamische Netzspeicher in stationären Systemen, da hier in der Regel kostengünstige Zellen mit hoher Leistungsdichte benötigt werden. Derartige Speicher sind unverzichtbar für die breite Nutzung regenerativer Energiequellen und damit ein wesentlicher Baustein der Energiewende.
Originalveröffentlichung:
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202100544
Siehe auch:
https://www.thm.fraunhofer.de/de/schwerpunkte/aluminium-basierte_batteriesysteme.html
https://www.iisb.fraunhofer.de/de/research_areas/materialien.html