Nachrichten, Gerüchte, Meldungen und Berichte aus der IT-Szene

Redaktion: Heinz Schmitz


Poröse Siliziumschichten für leistungsfähigere Batterien

Lithium Ionen Akku
Poröse Siliziumschichten für leistungsfähigere Lithium-Ionen-Batterien. (Quelle: Marynchenko Oleksandr/shutterstock, Fraunhofer FEP)

Lithium-Ionen-Batterien sind aufgrund ihrer guten Eigenschaften weit verbreitet. Sie weisen höhere Energiedichten als andere Batterien auf. Daher sind sie zum Beispiel in Kameras, Uhren, Handys und insbesondere im Bereich der Elektromobilität zu finden. Aus technischer Sicht gibt es aber weiterhin ein großes Potenzial für die Verbesserung und Optimierung der Zellen.

 

Lithium-Ionen-Batterien bestehen aus einer Anordnung diverser Schichten mit jeweils unterschiedlichen Funktionen. So sind Kathode und Anode die beiden Elektroden der Batterie und Elektrolyte die leitfähigen Materialien, die die Pole im Inneren der Zelle miteinander elektrisch verbinden. Um die Eigenschaften der Batterie im Hinblick auf tragbare mobile Geräte und Elektromobilität weiter zu verbessern, wird derzeit verstärkt an Materialien und Herstellungsprozessen geforscht. Dabei spielen Betrachtungen zur Ressourcenschonung, Umweltschutz und Sicherheit eine erhebliche Rolle. Zudem sollen die Batterien nachhaltig und kostengünstig in großer Menge herstellbar sein.

 

Lithium Ionen Akku

Schematischer Aufbau und Funktionsweise einer kommerziellen Lithium-Ionen-Batterie mit einer Graphit-Elektrode. (Quelle: Fraunhofer FEP)

 

 

Im Projekt PoSiBat wurde ein kosteneffizienter und umweltschonender Prozess zur Herstellung von porösen Siliziumschichten als Anodenmaterial entwickelt. Allerdings führen Lade- und Entladevorgang zu einer enormen Ausdehnung bzw. Schrumpfung des Siliziums und daher schnell zu einer mechanischen und elektrochemischen Zerstörung des Materialverbunds und so zum Zellversagen.

 

Lithium Ionen Akku

Schema der Anordnung einzelner Körner aus Zink (rot) und Silizium (blau) nach Abscheidung (links) und poröse Siliziumschicht nach Abdampfen von Zink durch Wärmebehandlung (rechts). (Quelle: Fraunhofer FEP)

 

 

Dr. Stefan Saager vom Fraunhofer FEP erläutert die Innovation: „Wir haben einen Prozess entwickelt, bei dem zeitgleich Silizium und Zink auf Metallsubstraten abgeschieden werden. Durch eine anschließende Wärmebehandlung verdampft der Zinkanteil aus der Schicht und hinterlässt eine poröse Struktur im Silizium, die Platz für dessen Ausdehnung im Ladeprozess bietet und somit den Kapazitätsverlust minimiert. Durch die Prozessparameter lässt sich die poröse Struktur manipulieren und auf die konkrete Batterieanforderung optimieren. Das Zink lässt sich dabei auffangen und perspektivisch im Prozess wiederverwenden.“ Die porösen Siliziumschichten zeigen hinsichtlich ihrer Batterieperformance eine initiale Ladekapazität über 3.000 mAh/gSi und eine vergleichsweite gute Zyklenstabilität.

 

Die Expertise des Fraunhofer FEP liegt dabei in der Beschichtung von Metallsubstraten und -folien mit Zink und Silizium, die mit sehr hohen Beschichtungsraten in herkömmlichen nicht toxischen Vakuumprozessen möglich ist. Diese Prozesse ermöglichen einen hohen Durchsatz und geringe Herstellungskosten. Im Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS wurden die hergestellten Schichten hinsichtlich ihrer elektrochemischen Eigenschaften charakterisiert.

 

Die Ergebnisse aus dem kürzlich abgeschlossenen Projekt werden im Workshop Dünnschicht-Technologie für Energiesysteme auf der V 2019 (08. – 10.10.2019, in Dresden) und auf dem Messestand des Fraunhofer FEP (Nr. 22) vorgestellt. Die Wissenschaftler am Fraunhofer FEP freuen sich nun, die Ergebnisse gemeinsam mit Batterieherstellern in leistungsfähige Produkte umzusetzen. Sie sind offen für Kooperationen.

 

Siehe auch:

www.fep.fraunhofer.de

Zurück