Nachrichten, Gerüchte, Meldungen und Berichte aus der IT-Szene

Redaktion: Heinz Schmitz


Grenzen der Silizium-Elektronik überwinden

Bauteile auf ScAlN-Basis
Das Fraunhofer IAF entwickelt elektronische Bauteile und Systeme auf GaN-Basis. Hier ist ein prozessierter GaN-Wafer zu sehen. (Quelle: Fraunhofer IAF)

Der Elektronikmarkt wächst signifikant und fordert immer kompaktere und effizientere leistungselektronische Systeme. Die bislang dominierende Elektronik auf Basis von Silizium wird den steigenden industriellen Ansprüchen in absehbarer Zeit nicht mehr gerecht werden. Nun haben sich Wissenschaftler aus Universität, Fraunhofer- Gesellschaft und Leistungszentren zusammengeschlossen, um eine neuartige Materialstruktur zu erforschen, die den Anforderungen der Industrie an zukünftige Leistungselektronik weit besser genügen soll. Verantwortlich für das starke Wachstum des Elektronikmarktes sind drei Hauptfaktoren: die Automatisierung und die Digitalisierung der Industrie sowie das steigende Bewusstsein für ökologische Verantwortung und nachhaltige Prozesse. Der Energieverbrauch kann nur gesenkt werden, wenn elektronische Systeme leistungsfähiger und gleichzeitig energie- und ressourceneffizienter werden.

 

Silizium-Technologie stößt an ihre physikalischen Grenzen

Bislang dominiert Silizium die Elektronikindustrie. Silizium ist neben seinen relativ geringen Kosten und seiner fast perfekten Kristallstruktur auch deshalb ein besonders erfolgreiches Halbleitermaterial, weil seine Bandlücke sowohl eine gute Ladungsträger-Konzentration und -Geschwindigkeit als auch eine gute Spannungsfestigkeit ermöglicht. Allerdings stößt die Silizium-Elektronik allmählich an ihre physikalischen Grenzen: Insbesondere in Bezug auf die geforderte Leistungsdichte und Kompaktheit sind leistungselektronische Bauelemente aus Silizium unzureichend.

 

Neue Materialkomposition für mehr Leistung und Effizienz

Mit dem Einsatz des Halbleiters Galliumnitrid (GaN) in der Leistungselektronik konnten bereits die Limitierungen der Silizium- Technologie überwunden werden. GaN besitzt die Fähigkeit, bei sehr hohen Spannungen, Temperaturen und Schaltfrequenzen eine größere Leistungsfähigkeit als Silizium aufzuweisen und ermöglicht damit eine signifikant höhere Energieeffizienz. Bei zahlreichen energieaufwendigen Anwendungen bedeutet dies eine deutliche Senkung des Energieverbrauchs. Das Fraunhofer IAF erforscht seit Jahren GaN-Halbleiterstrukturen und entwickelt elektronische Bauteile und Systeme auf GaN-Basis. Die Ergebnisse dieser Forschungsarbeiten sind mit Hilfe von industriellen Partnern bereits in kommerziellen Anwendungen im Einsatz. In dem Projekt »Leistungselektronik 2020+« gehen die Forscherinnen und Forscher nun einen Schritt weiter, um die Energieeffizienz und Lebensdauer zukünftiger Elektroniksysteme noch einmal zu steigern. Dafür soll zusätzlich ein anderes Material erstmalig eingesetzt werden: Scandiumaluminiumnitrid (ScAlN).

 

Erste Bauteile auf ScAlN-Basis

ScAlN ist ein piezoelektronisches Halbleitermaterial mit einer großen Spannungsfestigkeit, das weltweit für Anwendungen in der Mikroelektronik weitgehend unerforscht ist. »Dass sich Scandiumaluminiumnitrid aufgrund seiner physikalischen Eigenschaften besonders für den Einsatz in leistungselektronischen Bauelementen eignet, konnte bereits nachgewiesen werden«, erklärt Dr.-Ing. Michael Mikulla, Projektleiter auf Seiten des Fraunhofer IAF. Konkret geht es darum, ScAlN gitterangepasst auf einer GaN-Schicht zu wachsen und mit den daraus hergestellten Heterostrukturen Transistoren mit hoher Stromtragfähigkeit zu prozessieren. »Funktionale Halbleiterstrukturen basierend auf Materialien mit großer Bandlücke wie Scandiumaluminiumnitrid und Galliumnitrid ermöglichen Transistoren für sehr hohe Spannungen und Ströme. Die Bauelemente erreichen eine höhere Leistungsdichte pro Chip-Fläche sowie größere Schaltgeschwindigkeiten und höhere Betriebstemperaturen, was gleichbedeutend mit geringeren Schaltverlusten, höherer Energieeffizienz und kompakteren Systemen ist«, erläutert Prof. Dr. Oliver Ambacher, Institutsleiter des Fraunhofer IAF. »Unser Ziel ist es, mit der Materialkombination von GaN und ScAlN die maximal mögliche Ausgangsleistung des Bauelements bei einem deutlich geringeren Energiebedarf zu verdoppeln«, sagt Mikulla.

 

Pionierarbeit in der Materialforschung

Eine der größten Herausforderungen dieses Projektes ist das Kristallwachstum, da für diese Materialstruktur weder Wachstums-Rezepte noch Erfahrungswerte existieren. Für das Projektteam gilt es, diese Hürde in den nächsten Monaten zu überwinden, um zu reproduzierbaren Resultaten zu gelangen und Schichtstrukturen herzustellen, die erfolgreich für leistungselektronische Anwendungen eingesetzt werden können.

 

Siehe auch:

https://www.iaf.fraunhofer.de/

Zurück