Nachrichten, Gerüchte, Meldungen und Berichte aus der IT-Szene

Redaktion: Heinz Schmitz


Gehirnzellen bei der Arbeit beobachten

Gehirnzelle
Ziel der Forscher ist es einzelne Gehirnzellen in einem lebenden Organismus bei ihrer „Arbeit“ zu beobachten. (Quelle: ColiN00B / Pixabay)

Tomáš Čižmár erforscht neue Methoden zur Kontrolle der Lichtleitung in optischen Fasern. Das Ziel seiner Forschungsaktivitäten ist es, miniaturisierte Fasersonden herzustellen, mit denen er einzelne Gehirnzellen in einem lebenden Organismus bei ihrer „Arbeit“ beobachten kann. Indem sie die dabei ablaufenden Prozesse besser verstehen, hoffen Forscher Antworten auf bisher nur unzureichend verstandene biologische Abläufe zu finden. Etwa wie sich Erinnerungen in unserem Gehirn verankern und wie wir sie wieder abrufen. Die Technologie könnte nützlich sein, um den Beginn von Alzheimer oder anderen schweren neurologischen Erkrankungen besser zu verstehen.

 

Um hochaufgelöste Bilder aus schwer zugänglichen Körperregionen wie dem Gehirn zu erhalten ohne dabei das Gewebe großflächig zu schädigen, sind haarfeine Endoskopiesonden nötig. Herkömmliche faserbasierte Endoskope wären für solche Eingriffe viel zu groß. Sie bestehen meist aus einem Bündel mehrerer optischer Fasern, in dem jede Faser ein Pixel des Bildes überträgt. Eine von Tomáš Čižmár entwickelte holographische Methode erlaubt es nun, hochaufgelöste Bilder durch eine einzelne, nur ein Zehntel Millimeter dünne, optische Faser zu übertragen. „Die komplexe und schwer vorhersagbare Lichtleitung in solchen multimodalen Fasern verhinderte bis vor Kurzem ihren Einsatz in der Mikroskopie. Die Bildinformationen kamen völlig durcheinander und verzerrt aus der Faser. Mittels digitaler Holographie und Computeralgorithmen ist es uns gelungen, die verzerrten Bilder wiederherzustellen. Die hochauflösende Mikroskopie mit extrem dünnen Fasern öffnet ein Fenster, um Prozesse in vorher unerreichbaren Regionen lebender Organismen zu studieren – eventuell auch irgendwann beim Menschen“, so Tomáš Čižmár über die Zukunft der Technologie.

 

Am Institut möchte er zunächst die Lichtleitprozesse in multimodalen Fasern genauer erforschen. Um die Technologie letztendlich auch in der Mikroendoskopie einsetzen zu können, müssen die Fasern vor allem flexibel sein. Das ist eine Herausforderung, denn beim Verbiegen der Fasern verzerrt das übertragene Bild auf unterschiedliche Weise.  Eine Lösung des Problems verspricht sich der Forscher von einem genaueren Verständnis der Lichtausbreitung in der Faser. Die bisher relativ langsame Übertragungsgeschwindigkeit möchte er durch schnellere Grafikprozessoren und bessere Datenverarbeitungsalgorithmen erhöhen. „Am IPHT kann ich eine einzigartige technologische Infrastruktur für meine grundlagenorientierte Forschung im Bereich Faseroptik und -technologie nutzen. Zudem lässt sich die holografische Mikroendoskopie mit den hier etablierten Bildgebungstechniken kombinieren und so die Palette an lichtbasierten Technologien für die Medizin und Biologie erweitern“, begründet der gebürtige Tscheche seine Entscheidung nach Jena zu kommen.

 

Siehe auch:

https://www.leibniz-ipht.de/

Zurück